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tially full retention of enantiomeric purity during the rear­
rangement and the formation of endo and exo products with 
identical C-I configuration eliminate the, a priori least fa­
vorable,20 a-cleavage (path i) entirely22 and the allowed 
concerted cycloaddition (path iii) at least as the major re­
action course. There remains a stepwise mechanism of type 
ii which alone, irrespective of the detailed pathway, can ac­
count for the formation of the major product 5 (and equally 
well also for 6), barring its unlikely generation in a single 
a2s + w2a step which is forbidden in the terms of orbital 
symmetry control.4'24 

The high stereoselectivity of this reaction deserves some 
speculative comment although a definitive interpretation 
must await precise knowledge of the intermediate(s) in­
volved. Solvent dependent uv and NMR spectral changes25 

indicate that the ground-state conformational equilibrium 
of 1 in a polar medium favors the half-chair or boat forms 
with the dimethoxymethyl substituent in the (pseudo)equa-
torial position. The rearrangement to (IS)-S and -6 re­
quires the same conformation of triplet 1. It would in fact 
be acceptable to assume that ground and excited states 
adopt similar conformational preferences in similarly polar 
solvents. 

A stepwise reaction course corresponding to ii, as estab­
lished now as the most likely mechanism24 for (the major 
part of) the ODPM rearrangement of 1, need not be general 
to similar transformations of any other /3,7-unsaturated ke­
tone. Nevertheless, it is compatible with all other examples 
which have been studied in some detail.23'26 Only two'9'23e 

of those cases, which conform to the mechanistic expecta­
tions of an allowed a2 + T2 cycloaddition, require as an ad­
ditional condition that a single intermediate corresponding 
to 3 be formed and converted directly to product with inver­
sion at the /3-carbon. 
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Modes of Acid Catalysis in the Aromatization 
of Arene Oxides 

Sir: 

The aromatization of arene oxides has previously been 
shown to occur by HsO+ (^H) and spontaneous or water 
(ko) catalysis (eq I).1 Both mechanisms involve rate deter-

(1) 

mining carbocation formation when the migrating group 
(X) is H.2 We report herein results which establish that the 
ring opening reaction is subject to general acid catalysis 
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Table I. 

A A 
Rate Constants, Kinetic Solvent Isotope Effects, and Activation Parameters 

Arene oxide" 

Benzene oxide 
Naphthalene 1,2-oxide 
Phenanthrene 1,2-oxide 
Phenanthrene 3,4-oxide 
Phenanthrene 9,10-

oxide 

H3O+ 

* H , 
M-' s-' 

30 
140 

1000 
2700 

100 

catalyzed 

kH
H2°/kD

Di° 

0.5 
0.2 

0.3 

^ H 2 O S ' 

1.20 X 10-3 

2.9 X 10~3 

3.10X 10~2 

5.55 X 10"2 

2.1 X 10-4 

H2O catalyzed 

£ H 2 O / & D 2 0 

1.25 
1.30 
1.24 
1.25 
1.29 

AH*,b 

kcal M- ' 

17.1 
13.4 
13.7 
12.3 

A5*,eu* 

-15.4 
-26.2 
-20.1 
-23.8 

" Samples were from previous studies: benzene oxide and phenanthrene 9,10-oxide (ref 1), naphthalene 1,2-oxide (ref 2), phenanthrene 
1,2 and 3,4-oxide (ref 3). *> Values of £ a were determined from plots of log fcobsd vs. 1/7, AH* = £ a - RT, AF* = RT In (kT/hkobs<i), 
AS* = (AH* - AF*)/T; standard state 25° and time in seconds. 

and, furthermore, that the k$ and A:H associated mecha­
nisms represent general acid catalysis with very little and 
very nearly complete proton transfer, respectively. General 
acid catalysis has previously been recognized in the aroma-
tization of the K-region oxide, phenanthrene 9,10-oxide.3 It 
is now evident that general acid catalysis of the ring open­
ing reaction is a common feature of both K-region and non-
K-region arene oxides. 

The arene oxides employed in this study are listed in 
Table I. Below pH ~5.5 and above pH ~7.5 , addition of 
general acids (CH3CO2H, HCOOH, H2CO3 , etc.) up to 
0.5 M does not alter the pseudo-first-order rate constants 
(&obsd) for aromatization of the various oxides. In the pH 
range 5.5-7.5, however, the aromatization of the oxides is 
subject to general acid catalysis by acetic acid, cacodylic 
acid, H2P04~, and imidazole-H+ (see insert to Figure 1). 
The second-order rate constants for buffer acid catalysis 
(&HA) were obtained from the slopes of plots of fc0bsd vs. 
[ A T ] , where [AT] = [HA] + [A:], employing four to five 
concentrations of [AT] for each plot. Plots were obtained 
for 2-3 pH values and £HA = slope/ai-i(-Ka + ^ H ) - ' ac­
cording to eq 2 where Ka is the acid dissociation constant of 
HA and an is the hydrogen ion activity as measured by the 
glass electrode. In Figure 1 the log &HA values are plotted 
vs. the pA â of HA in the Bronsted fashion. The slope of the 
lines (—a) connecting the points vary from 0.8 to 0.1. The 
tangential —a value at pKa 7 is ~0.6. In Table I are re­
ported pertinent kinetic terms for the H 3 O + and H2O cata­
lyzed isomerization of five arene oxides to their respective 
phenolic products. The kinetic deuterium solvent isotope ef­
fects for H2O catalysis (/coH2°//coD2°) are seen to range 
from 1.24 to 1.30, indicating some proton donation from 
H2O to oxide in the transition state. The AS^eu values for 
the H2O catalyzed reaction (—15 to —26) are of the magni­
tude usually associated with involvement of H2O as a gen­
eral acid or general base.4 On the other hand, the values of 
Z C N H 2 O ^ 0 D 2 O a r e a s previously reported for specific acid 
catalysis.5 

fcobsd = kHaH + k0 + ^ H A [ A T ] 
an 

(2) 

Rate determining carbocation formation may occur by 
way of the stepwise alternate routes of eq 3. A knowledge of 

*8 ' 
B 

O H A 

A 

OH 

D 

Il 
0- H A 

C 

(3) 

the free energies of formation of states B, C, and D from A 
(i.e., A G 0 A ^ B , AG0A^c and A G ° A - D ) along with the 
values of the edge free energies of activation in going from 
state to state (i.e., AG*A—B, AG+B-D, and AG*A—D) al­
lows, at least in principle, the computation of a free energy 
contour map (method of alternate routes or "MAR") . The 
"MAR" free energy contour maps6,7 of I, II, and III per­
tain to pH 0, 6, and 11, respectively.5 In I the transition 
state associated with H 3 O + catalysis (A —*• B —- D) lies 
close to the B — D edge (80% H + transfer, -a =* 0.8), 
while in III the transition state for H2O catalysis is close to 
the C — D edge (40% H + transfer, -a = 0.4). Thus, within 
the limits of the MAR computation, the mechanism for kn 
borders on specific acid-general acid catalysis while the 
mechanism for ko borders on general acid catalyzed ring 
opening and spontaneous ring opening followed by a par­
tially rate determining diffusion-controlled protonation by 
H2O. Inspection of II reveals that near pH 6.0, the 
AG*B—D and AG*c—D values for the rate controlling steps 
of H 3 O + and H2O catalysis, respectively, are nearly identi-
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Figure 1. Plot of the log of the second-order rate constants for catalysis 
of aromatization of phenanthrene 3,4-oxide (D), phenanthrene 1,2-
oxide (A), naphthalene 1,2-oxide (O), phenanthrene 9,10-oxide (3), 
and benzene oxide (V) vs. the pAfa of the acid catalyst: H3O+ (p#a 
-1.74), acetic acid (pA"a 4.71), cacodylic acid (pKa 6.23), H2PO4

-

(ptfa 6.42), imidazole (p/fa 7.14), Tris (ptfa 8.25), and H2O (pA"a 
15.75). Insert to figure: Plots of the observed first-order rate constants 
vs. total concentration of phosphate buffer for the aromatization of 
naphthalene 1,2-oxide at three pH values. 

cal and a free energy minimum exists between A and D 
which provides for concerted general acid catalysis. From II 
it may be seen that this minimum corresponds to a transi­
tion state associated with ca. 60% C-O bond scission and 
60% H-O bond scission (—a = 0.6). General acid catalysis 
of carbocation formation is, therefore, anticipated in the 
aromatization of the arene oxides. The experimental results 
reported herein support these quasi-theoretical predictions. 

Jencks and co-workers have recently established Bronst-
ed relationships extending from /3 = +1 to O for general 
base-assisted acyl transfer to a-effect amines.8 The present 
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This is the second book of a series having the aim of giving to 
the college graduate background information needed to appreciate 
current developments and philosophy in the chemical industry. The 
title is potentially misleading, for the book is concerned with the 
nature of pharmaceutical and agrochemical industries, and has 
nothing to do with health conditions and security in a chemical 
plant. 

The first half of the book starts with drug design, discusses spe­
cific types of biological effects, and continues through development 
to screening, clinical trial, formulation, and marketing. The second 
half begins with a general discussion of research on agrochemicals, 
followed by discussions of pesticides, control of plant diseases, 
plant growth regulators, fertilizers, and finally agrochemicals and 
the environment. Each half has a concluding essay entitled "The 
Future of the Industry"; these are frank and do not shrink from 
controversial issues. 

* Unsigned book reviews are by the Book Review Editor. 

study represents the first instance of a range of possible 
transition states in a general acid catalyzed reaction. 
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The emphasis of the authors naturally reflects their British 
background, and some allowance must be made for differences 
when transferring the discussions to American industry. Neverthe­
less, it is a helpful and interesting orientation piece. It is quite 
short, but the brevity has the merit of encouraging one to read it. 
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